If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=d^2-20d-64
We move all terms to the left:
0-(d^2-20d-64)=0
We add all the numbers together, and all the variables
-(d^2-20d-64)=0
We get rid of parentheses
-d^2+20d+64=0
We add all the numbers together, and all the variables
-1d^2+20d+64=0
a = -1; b = 20; c = +64;
Δ = b2-4ac
Δ = 202-4·(-1)·64
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{41}}{2*-1}=\frac{-20-4\sqrt{41}}{-2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{41}}{2*-1}=\frac{-20+4\sqrt{41}}{-2} $
| 4(4x+1)=-2(5x-5)-5x | | 0=d^2-20d-80 | | 5x+11=x-(-5) | | z–18=-20 | | 5(4x+1)=-4(4x-3)-3x | | 2n-10=-8 | | 8(x−3)+14=2(−5+3x)+2x | | -(.2t^2-20t+375)=0 | | 2(5x+3)=-3(2x-3)+2x | | 3n^2+3n-60=0 | | 2(5x+2)=-2(5x-3)+3x | | 2w-2=10 | | 2(3x+1)=-4(3x-1)-3x | | 2(2x+2)=-2(2x-3)-5x | | x+3/4=x-2/2 | | −8+(x7)=−10 | | 5w^2-30=0 | | 4(4x+1)=-5(5x-5)+3x | | Y-2+4y+2=90 | | Y-2)-4y+2=180 | | 2(3x+2)=-2(5x-5)-3x | | -8x^2-6=-102 | | 2x+3/4=2 | | y-2+4y+2=180 | | 5t=-60 | | 5(2x+4)=-5(5x-5)-3x | | 12n-9=4n | | Y-2+3y=180 | | 8y-12+4y+8=180 | | -6(9x+5)-3x+4=-408+8 | | (4x+20)°+(7x+5)°=360° | | 5y+7+2y-1=180 |